Motion and Energy	Description
v = d/t	v = velocity
d = vt	d= distance
t = d/v	<i>t</i> = time
a = F/m	a = acceleration
F = ma	F= Force
m = F/a	m = mass
$F_w = mg$	F_w = Weight Force
	m = mass
	$g = \text{acceleration of gravity } (9.8^{\frac{m}{2}})$
W = Fd	W = work $F = Force$ $d = distance$
P = W/t	P = Power W = Work t = time
PE = mah	PE = Potential Energy
night	m = mass
	a = gravity
	h = height
$KE = 1/2mv^2$	KE = Kinetic Energy $m = mass$ $v = velocity$
T = 1/f	T = period
f = 1/T	f = frequency
, v	v = velocity
$\lambda = \frac{1}{f}$	f = frequency
	$\lambda = wavelength$
d = m/V	d = density
	m = mass
	<i>V</i> = Volume
$q = mC_{n}\Delta T$	q = heat energy (quantity of heat)
- r	m = mass
	Cp = specific heat
	ΔT = change in teperature
$F_{r} = G \frac{m_1 m_2}{m_1 m_2}$	F_g = force of gravity
d^2	G = universal gravitation constant
	(6.67x10 ⁻¹¹ N⋅m²/kg²)
	m_1 and m_2 are masses of two objects
	d = distance between two objects
p=mv	p = momentum
	m = mass
	v = velocity
$T^2 \alpha R^3$	T = orbital period
	R = orbital distance
$E_{\text{mechanical}} = E_{\text{potential}} + E_{\text{kinetic}}$	E = energy
Chemical Equilibrium	A+B↔C+D
Synthesis	$A + B \rightarrow AB$
Decomposition	$AB \rightarrow A + B$
Single Replacement	$A + BC \rightarrow AC + B$
Double Replacement	$AX + BY \rightarrow AY + BX$