Directions to the Student

Today you will be taking Session I of the Missouri Algebra II Test. This is a test of how well you understand the course level expectations for Algebra II.

There are several important things to remember:

1. Read each question carefully and think about the answer. Then choose the answer that you think is best.

3. If you do not know the answer to a question, skip it and go on. You may return to it later if you have time.

4. If you finish the test early, you may check over your work.
1. Which of the following is the simplified expression of \(2\sqrt{-16} + \sqrt{225} \) in standard form, \(a + bi \)?

A. \(15 + 4i \)
B. \(15 - 4i \)
C. \(15 + 8i \)
D. \(15 - 8i \)
2. The student council at a high school placed a box in the cafeteria where students could vote for which of three specialty lunch days would be the most popular: Mac & Cheese Monday, Taco Tuesday, or Fish Friday. More than twice as many students voted for Mac & Cheese Monday than the second-place choice Taco Tuesday. Chelsea asked the students at her table which choice they voted for. All but one student said they voted for Taco Tuesday. The other student voted for Fish Friday.

What is the most likely reason for the difference between the student council’s results and Chelsea’s?

A. Both survey methods were biased so a difference between the results is understandable.

B. Both the student council and Chelsea collected data in an unbiased sample. Random variation between the two samples accounts for the different results.

C. The student council’s method was biased because students could vote multiple times. Chelsea’s method was unbiased and represented the school’s population better.

D. Chelsea influenced the students at her table into choosing the option she preferred, and the student council’s box was taken over by people that really liked Mac & Cheese.
3. Classify each function as either an exponential, polynomial, or rational function.

Select the correct boxes.

<table>
<thead>
<tr>
<th>Function</th>
<th>Exponential</th>
<th>Polynomial</th>
<th>Rational</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(x) = x^3$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$f(x) = 3^x$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$f(x) = \frac{x + 1}{x - 3}$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Graph 1](image1)

![Graph 2](image2)

![Graph 3](image3)

![Graph 4](image4)
4. Rewrite the exponential equation \(5^x = 20\) into an equivalent logarithmic equation.

Fill in each box with the correct letter of the answer choice.

\[\log__ _ = _ _ \]

A. \(x\)
B. \(20\)
C. \(4\)
D. \(5\)
5. Factor each polynomial completely. Draw a line from each polynomial on the left to the corresponding factored form on the right.

\[4(x - 2)(x + 2)\]

\[(x + 5)(x - 5)\]

\[x^2 + 25\]

\[(x - 3)\left(x + \frac{3}{2} + \frac{3\sqrt{3}i}{2}\right)\left(x + \frac{3}{2} - \frac{3\sqrt{3}i}{2}\right)\]

\[4x^2 - 16\]

\[(2x + 1)(3x - 5)\]

\[6x^2 + 7x - 5\]

\[(x + 5i)(x - 5i)\]

\[x^3 - 27\]

\[(2x - 1)(3x + 5)\]

\[4(x^2 - 4)\]

\[(x - 3)^3\]
6. Draw a line from each function on the left to the equivalent form of the function on the right. Not all functions on the right side will be used.

- $y = (x - 6)(x + 4)$
- $y = (x - 5)^2 - 49$
- $y = x^2 + 2x - 24$
- $y = (x - 12)(x + 2)$

- $y = x^2 - 2x - 24$
- $y = (x + 12)(x + 2)$
- $y = x^2 - 24$
- $y = (x + 1)^2 - 25$
- $y = (x - 12)(x + 2)$
7. Condense the following expression into a single term using properties of logarithms.

$$2 \log_3 x + 3 \log_3 y - 5 \log_3 z$$

Which single term is equivalent to the expression?

A. $$\log_3 \left(\frac{x^2 y^3}{z^5}\right)$$

B. $$\log_3 \left(\frac{6xy}{5z}\right)$$

C. $$\log_3 (2x + 3y - 5z)$$

D. $$\log_3 \left(\frac{2x + 3y}{5z}\right)$$
8. Simplify the following rational expression completely:

\[
\frac{x^2 - 1}{x^2 + 2x + 1} \div \frac{1 - x}{x + 1}
\]

Enter the simplified answer in the box.
9. All functions of form \(f(x) = x^n \), where \(n \) is an integer, can be graphed on a Cartesian coordinate plane.

Function transformations are listed in the first column of the table. Transformed functions are listed in the top row.

Select the box or boxes that match each function with the transformation that took place.

<table>
<thead>
<tr>
<th>Transformation</th>
<th>(g(x) = -(x - h)^n)</th>
<th>(j(x) = ax^n + k)</th>
<th>(m(x) = (x + h)^n - k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reflection across the (x)-axis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Translation of (h) units to the left</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Translation of (k) units up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertical dilation</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
10. Draw a line from each rational expression on the left to its equivalent radical expression on the right.

- \(25^{\frac{1}{2}}\) ↔ \(\sqrt{5}\)
- \(4x^{\frac{2}{3}}\) ↔ \(\sqrt[3]{4x^2}\)
- \(x^{\frac{1}{3}}\) ↔ \(\sqrt[3]{x}\)
- \(\frac{x^2}{4}\) ↔ \(\frac{\sqrt{x^2}}{2}\)
- \(x^3\)
11. The graph below is of a polynomial function \(y = f(x) \).

Which of the following is the most likely factorization of \(f(x) \)?

A. \(f(x) = (x - 2)^2(x + 3) \)
B. \(f(x) = -(x - 2)^2(x + 3) \)
C. \(f(x) = (x + 2)^2(x - 3) \)
D. \(f(x) = -(x + 2)^2(x - 3) \)
12. Function f is defined as $f(x) = x^2$. Three transformations are performed on function f to produce a new function g. The transformations are listed.

- horizontal translation of 5 units right
- vertical stretch of 2
- reflection across the x-axis

Graph function g.

[Graph of function g, showing a transformation of $f(x) = x^2$ with the specified transformations applied.]
13. A total of 150 students have taken an Algebra II final exam. The scores are normally distributed with a mean of 71% and a standard deviation of 6%. How many students would you expect to have scored between 65% and 77%?

A. 51
B. 68
C. 102
D. 142
14. Create a graph to show the intersection of $y = (x - 5)^2 + 1$ and $y = x - 2$. Be sure to include labels for the axes and appropriate increments for the axes.
15. Which of the following expressions are solutions for \(x \) in the equation \(4^x = 12 \)? Select all that apply.

A. \(\frac{\log 4}{\log 12} \)

B. \(\frac{\log 12}{\log 4} \)

C. \(\frac{\ln 4}{\ln 12} \)

D. \(\frac{\ln 12}{\ln 4} \)

E. \(\log_4(12) \)

F. \(\log_{12}(4) \)
16. Which are factors of the polynomial $p(x) = x^3 + 5x^2 + 2x - 8$?
Select all that apply.

A. $(x - 4)$

B. $(x - 2)$

C. $(x - 1)$

D. $(x + 1)$

E. $(x + 2)$

F. $(x + 4)$
17. The following question has two parts. First, answer Part A. Then, answer Part B.

Part A

Which of the following is the inverse of \(f(x) = \frac{1}{2}x - 6 \)?

A. \(f^{-1}(x) = -\frac{1}{2}x + 6 \)
B. \(f^{-1}(x) = \frac{1}{2}x + 6 \)
C. \(f^{-1}(x) = 2x - 12 \)
D. \(f^{-1}(x) = 2x + 12 \)

Part B

What is the result when the two functions are composed, \(f(f^{-1}(x)) \)?

Enter your answer in the box.

\[f(f^{-1}(x)) = \]
18. For the polynomial function \(f(x) = x^3 + 5x^2 + 9x + 45\), select the values that correctly complete each statement.

The polynomial has ____ total zeros.
- 3
- 2
- 1
- 0

The polynomial has ____ real zeros.
- 3
- 2
- 1
- 0

The polynomial has ____ non-real zeros.
- 3
- 2
- 1
- 0
19. Sound intensity is measured in decibels (dB) on a logarithmic scale. The formula $dB = 10\log\left(\frac{P}{P_0}\right)$ is used to determine the decibel level of a sound, where P is the intensity of the sound heard and P_0 is the intensity of the softest sound a human ear can hear. Normal conversation is measured at 60 dB. What is the ratio $\frac{P}{P_0}$ for normal conversation?

A. 10^{60}
B. 10^{50}
C. 50^{10}
D. 10^6
20. Perform the given operation. Draw lines from the algebraic expressions to form the simplified rational expression.

\[
\frac{x^3 + 2x^2 - 9x - 18}{x^2 - 4} \div \frac{x^2 - 3x}{x - 2} = \frac{\text{numerator}}{\text{denominator}}
\]

\[
\begin{align*}
x & \\
x + 2 & \\
x - 2 & \\
x + 3 & \\
x - 3 & \\
\end{align*}
\]

\[
\begin{array}{c}
\text{Numerator} \\
\text{Denominator}
\end{array}
\]

Go On
21. A random sample of 11th grade students from two high schools took a mathematics test. The table below displays each school’s results. A score of 35 indicates that the student is college ready.

<table>
<thead>
<tr>
<th>Test Results</th>
<th>School A</th>
<th>School B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Students</td>
<td>18</td>
<td>22</td>
</tr>
<tr>
<td>Mean Score</td>
<td>37.4</td>
<td>35.7</td>
</tr>
<tr>
<td>Median Score</td>
<td>37.0</td>
<td>35.5</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>4.2</td>
<td>3.8</td>
</tr>
</tbody>
</table>

Which of the following statements are supported by the results?

Select all that apply.

A. At least half the students at both schools scored as college ready.

B. The data from both schools do not appear to be skewed because the mean and the median scores for both are close.

C. School A does a better job instructing its students because the median score at School A is higher than it is at School B.

D. The difference between the mean scores at the two schools is not sufficient to claim that the students at School A perform better than those at School B.

E. Since the standard deviation of the scores of School B is less than the standard deviation of the scores of School A, School B does a better job of making its students college ready.
22. Select all the expressions that are equivalent to $\sqrt[5]{32a^4b^{12}c^{-5}}$.

A. $6.4a^2c\sqrt[5]{a^4b^2}$

B. $\frac{2b^2\sqrt[5]{a^5b^{12}}}{c}$

C. $\frac{6.4a^5b^{12}}{c}$

D. $2a^5b^{12}c^{-1}$

E. $2b^2c\sqrt[5]{a^4b^{12}}$

F. $\frac{2a^5b^{12}}{c}$
23. Solve the following logarithmic equation for x:

$$\log_2(3x - 1) = 5$$

Enter the numeric value of x in the box.
24. Three high school students are trying to determine what proportion of households in their community recycle.

- Student A surveyed 25 of his family members and closest friends.
- Student B divided the community into 5 equivalent sections and randomly surveyed 5 households from each section.
- Student C surveyed the first 25 people who walk into the local mall.

Which data set is most reliable and why?

Select the choices that correctly complete the sentence.

Student ____ data set is most reliable

- A’s
- B’s
- C’s

because the student collected data from a _______ .

- random sample
- normal sample
- carefully selected sample
25. What is the solution for the equation \(\frac{2}{x^2 - x} = \frac{1}{x - 1} \)?

Enter the answer in the box.

\[x = \]
26. Given \(f(x) = x^2 + 8x - 20 \) and \(g(x) = 4x - 10 \), what is \((f \cdot g)(x)\)?

A. \(4x^2 + 32x - 90 \)
B. \(16x^2 - 48x \)
C. \(16x^2 + 32x - 200 \)
D. \(4x^3 + 22x^2 - 160x + 200 \)
A city council is trying to pass a new proposition to increase funding for the local schools. In order to pass the proposition, they will need over 50% of the votes in the upcoming election. A poll of a random sample of 600 resident voters was conducted, and 52% of those residents support the new budget.

The margin of error in the poll is ±4%. Should the city council strongly believe that the new budget will be approved?

A. No, the confidence interval includes values that are less than 50%.
B. No, the margin of error is too high. There might have been a problem with the poll.
C. Yes, the confidence interval includes values that are mostly greater than 50%.
D. Yes, a 4% margin of error means that there is a 96% chance that the results are correct and 52% of voters will support the new proposition.
28. Solve the logarithmic equation.

$$\log_5(2) + \log_5(x - 3) = 2\log_5(4)$$

Enter the answer in the box.

$$x =$$
29. What is \((\sqrt{3} + 5)(\sqrt{2} + \sqrt{6})\) written in simplest form?

A. \(6\sqrt{6} + \sqrt{18} + 5\sqrt{2}\)

B. \(\sqrt{6} + 5\sqrt{6}\)

C. \(5\sqrt{6} + 8\sqrt{2}\)

D. \(6\sqrt{6} + 8\sqrt{2}\)
30. Determine the least common multiple for the polynomials
\(x^2 + 7x + 6, \ x^2 − 1, \) and \(2x^2 + 9x − 18. \)

Which are factors of the least common multiple? Select all that apply.

A. \((x + 1)\)
B. \((x + 3)\)
C. \((x + 6)\)
D. \((x − 1)\)
E. \((x − 3)\)
F. \((2x − 3)\)
31. Sound intensity \(I \) is measured in watts per meters squared \(\left(\frac{W}{m^2} \right) \), and the loudness of the sound, \(L(I) \), which is measured in decibels (dB), is described by the function \(L(I) = 10 \log \left(\frac{I}{I_0} \right) \).

A barely audible sound has intensity \(I_0 = 10^{-12} \frac{W}{m^2} \).

Rounded to the nearest tenth of a decibel, what is the loudness, in decibels, of a musical group that plays with sound intensity of \(I = 6.7 \times 10^{-3} \frac{W}{m^2} \)?

A. 8.2
B. 9.8
C. 76.5
D. 98.3
Directions to the Student

Today you will be taking Session II of the Missouri Algebra II Test. This is a test of how well you understand the course level expectations for Algebra II.

There are several important things to remember:

1. Read the performance event carefully and think about how to answer the question.

2. Show all of the work that you did to answer the question with a number 2 pencil. If a box is provided, make sure all of your work is in the box. If a line is provided to write your answer on, be sure your answer is on the line.

3. If you do not know the answer to a question, skip it and go on. You may return to it later if you have time.

4. If you finish the test early, you may check over your work.

5. Write or mark your answers directly in your test book with a number 2 pencil.
Corinne is planning to invest in a savings account and Sally intends to purchase a car. Help Corinne and Sally with their financial planning.

1. The following question has two parts. First, answer Part A. Then, answer Part B.

For her birthday, Corinne's grandfather is giving her a choice of investment plans. She can choose either Plan X or Plan Y.

Plan X: A single deposit of $500 is invested at 6% interest rate, compounded continuously.

Plan Y: An annuity with a deposit of $5 per month is invested at an interest rate of 6% per year, compounded monthly.

To determine the value of the account under Plan Y, use

\[A = \frac{P \left(1 + \frac{r}{12}\right)^{12t} - 1}{\frac{r}{12}}, \]

where \(A \) is the amount of money in the account, \(P \) is the monthly deposit, \(r \) is the interest rate, and \(t \) is the number of years.
Part A

After 7 years, how much money would each plan have? Enter the amounts, rounded to the nearest cent, in the boxes.

Plan X: $

Plan Y: $

Part B

How many years will it be before the amount of money in Plan Y exceeds the amount of money in Plan X? Select the number of years that correctly completes the sentence.

It will be ____________ before the amount of money in Plan Y exceeds

- 10 years
- 12 years
- 14 years
- 16 years

the amount of money in Plan X.
2. The following question has two parts. First, answer Part A. Then, answer Part B.

Part A

Corinne has $500 to invest. She wants to see how much money she would have at the end of 4 years if she invested her money in an account with a 6% interest rate. Rounded to the nearest cent, enter the amount of money each option would have at the end of 4 years in the boxes below.

Plan A—Compounded Annually: $

Plan B—Compounded Quarterly: $

Plan C—Compounded Monthly: $

Plan D—Compounded Continuously: $

Part B

Select the number of years that correctly completes the sentence.

It will take ____________ for Corinne to double her investment if her investment is compounded continuously.

- 10 years
- 12 years
- 14 years
- 16 years
3. Sally is buying a car for $3,295. She has saved $900, but she must borrow money from her family for the remainder. Her family will loan her the remainder at 5% interest, compounded quarterly. She will not have to make payments for 2 years but will pay the entire loan in one lump sum.

Rounded to the nearest cent, how much money will she owe her family at the end of 2 years? Enter the amount owed in the box.

$

When Sally pays back the loan at the end of 2 years, her family lets her keep the interest on the loan. Rounded to the nearest cent, enter the amount of money Sally will get to keep in the box.

$

STOP
<table>
<thead>
<tr>
<th>Session</th>
<th>Item</th>
<th>Type</th>
<th>MLS Code</th>
<th>Answer</th>
<th>Point(s)</th>
<th>Point Breakdown</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>MC</td>
<td>A2.NQ.B.5</td>
<td>C</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>MC</td>
<td>A2.DS.A.3</td>
<td>A</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
| 1 | 3 | MS | A2.IF.A.1| Letters = columns Numbers = rows B1, A2, C3, B4, C5, A6 | 2 | • 2 points for 6 correct answers
 • 1 point for 6 correct answers and 1 incorrect answer
 • 1 point for 5 correct answers and 0-1 incorrect answers
 • 1 point for 4 correct answers and 0 incorrect answers
 • 0 points for all other scenarios |
| 1 | 4 | MS | A2.SSE.A.1| D, B, A | 1 | • 1 point for 3 correct answers |
| 1 | 5 | MS | A2.APR.A.1| Letters = left column Numbers = right column A5, B1, C6, D3 | 2 | • 2 points for 4 correct answers
 • 1 point for 4 correct answers and 1 incorrect answer
 • 1 point for 3 correct answers and 0-1 incorrect answers
 • 0 points for all other scenarios |
| 1 | 6 | MS | A2.IF.A.2| Letters = left column Numbers = right column A1, B5, C4 | 1 | • 1 point for 3 correct answers |
| 1 | 7 | MC | A2.SSE.A.3| A | 1 | |
| 1 | 8 | SA | A2.APR.A.4| -1 | 1 | |
| 1 | 9 | MS | A2.BF.A.3| Letters = columns Numbers = rows A1, C2, B3, B4 | 2 | • 2 points for 4 correct answers
 • 1 point for 4 correct answers and 1 incorrect answer
 • 1 point for 3 correct answers and 0-1 incorrect answers
 • 0 points for all other scenarios |
| 1 | 10 | MS | A2.NQ.A.2| Letters = left column Numbers = right column C1, A2, B5 | 1 | • 1 point for 3 correct answers |
| 1 | 11 | MC | A2.APR.A.5| D | 1 | |
| 1 | 12 | TE | A2.BF.A.3| The graph is a downward-opening parabola. The vertex is at (5, 0). Two points on the parabola are (4, -2) and (6, -2) OR (3, -8) and (-7, 8). Note: Full credit if parabola is correct and parent points are left. | 2 | • 2 points for all 3 transformations correctly applied
 • 1 point for 2 out of 3 transformations correctly applied
 • 0 points for 0-1 of the transformations correctly applied |
<p>| 1 | 13 | MC | A2.DS.B.8| C | 1 | |</p>
<table>
<thead>
<tr>
<th>Session</th>
<th>Item</th>
<th>Type</th>
<th>MLS Code</th>
<th>Answer</th>
<th>Point(s)</th>
<th>Point Breakdown</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14</td>
<td>TE</td>
<td>A2.REI.B.3</td>
<td>Correct graph of functions $y = (x - 5)^2 + 1$ and $y = x - 2$ and correctly labeled axes with appropriate numbers.</td>
<td>2</td>
<td>• 1 point for correct graph of functions $y = (x - 5)^2 + 1$ and $y = x - 2$ • 1 point for correct labeled axes with appropriate numbers, perhaps using increments of 10</td>
</tr>
<tr>
<td>1</td>
<td>15</td>
<td>MS</td>
<td>A2.SSE.A.2</td>
<td>B, D, E</td>
<td>1</td>
<td>• 1 point for 3 correct answers</td>
</tr>
<tr>
<td>1</td>
<td>16</td>
<td>MS</td>
<td>A2.APR.A.2</td>
<td>C, E, F</td>
<td>1</td>
<td>• 1 point for 3 correct answers</td>
</tr>
<tr>
<td>1</td>
<td>17</td>
<td>ESR</td>
<td>A2.BF.A.2</td>
<td>Part A D Part B x</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>18</td>
<td>MC</td>
<td>A2.NQ.B.7</td>
<td>First response "3" Second response "1" Third response "2"</td>
<td>1</td>
<td>• 1 point for 3 correct answers</td>
</tr>
<tr>
<td>1</td>
<td>19</td>
<td>MC</td>
<td>A2.SSE.A.4</td>
<td>D</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>20</td>
<td>MS</td>
<td>A2.APR.A.4</td>
<td>Letters = left column Numbers = right column A2, D1</td>
<td>2</td>
<td>• 2 points for 2 correct answers • 1 point for 1 correct answer • 0 points for no correct answers</td>
</tr>
<tr>
<td>1</td>
<td>21</td>
<td>MS</td>
<td>A2.DS.A.7</td>
<td>A, B, D</td>
<td>1</td>
<td>• 1 point for 3 correct answers</td>
</tr>
<tr>
<td>1</td>
<td>22</td>
<td>MS</td>
<td>A2.NQ.A.1</td>
<td>B, D, F</td>
<td>2</td>
<td>• 2 points for 3 correct answers and 0 incorrect answers • 1 point for 3 correct answers and 1 incorrect answer • 1 point for 2 correct answers and 0 incorrect answers • 0 points for all other scenarios</td>
</tr>
<tr>
<td>1</td>
<td>23</td>
<td>SA</td>
<td>A2.SSE.A.2</td>
<td>11</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>24</td>
<td>MC</td>
<td>A2.DS.A.1</td>
<td>B’s, Random Sample</td>
<td>1</td>
<td>• 1 point for 2 correct answers</td>
</tr>
<tr>
<td>1</td>
<td>25</td>
<td>SA</td>
<td>A2.REI.A.2</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>26</td>
<td>MC</td>
<td>A2.BF.A.1</td>
<td>B</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>27</td>
<td>MC</td>
<td>A2.DS.A.4</td>
<td>A</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>28</td>
<td>SA</td>
<td>A2.SSE.A.3</td>
<td>11</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>29</td>
<td>MC</td>
<td>A2.NQ.A.3</td>
<td>D</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Session</td>
<td>Item</td>
<td>Type</td>
<td>MLS Code</td>
<td>Answer</td>
<td>Point(s)</td>
<td>Point Breakdown</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>------</td>
<td>----------</td>
<td>--------</td>
<td>----------</td>
<td>-----------------</td>
</tr>
</tbody>
</table>
| 1 | 30 | MS | A2.APR.A.3 | A, C, D, F | 2 | • 2 points for 4 correct answers and 0 incorrect answers
| | | | | | | • 1 point for 4 correct answers and 1 incorrect answer
| | | | | | | • 1 point for 3 correct answers and 0 incorrect answers
| | | | | | | • 0 points for all other scenarios |
| 1 | 31 | MC | A2.SSE.A.4 | D | 1 | |
| 2 | 1 | ESR | A2.FM.A.1 | Plan X: $760.98, Plan Y: $520.37
| | | | | Part A
| | | | | 12 Years
| | | | | Part B
| | | | | • 2 points for 2 correct answers
| | | | | • 1 point for 1 correct answer
| | | | | • 0 points for 0 correct answers
| | | | | Part B
| | | | | • 1 point for correct answer |
| 2 | 2 | ESR | A2.REI.A.1 | Plan A: $631.24, Plan B: $634.49, Plan C: $635.24, Plan D: $635.62
| | | | | Part A
| | | | | 12 Years
| | | | | Part B
| | | | | • 4 points for 4 correct answers
| | | | | • 3 points for 3 correct answers and 0-1 incorrect answers
| | | | | • 2 points for 2 correct answers and 0-2 incorrect answers
| | | | | • 1 point for 1 correct answer and 0-3 incorrect answers
| | | | | • 0 points for no correct answers
| | | | | Part B
| | | | | • 1 point for correct answer |
| 2 | 3 | SA | A2.REI.B.3 | $2645.24, $250.24 | 2 | • 2 points for 2 correct answers
| | | | | | | • 1 point for 1 correct answer
| | | | | | | • 0 points for no correct answers |