Name: ________________________________________
Business Computer Programming
	Directions:

Evaluate the student by checking the appropriate number or letter to indicate the degree of competency. The rating for each task should reflect employability readiness rather than the grades given in class.

Rating Scale:


3
Mastered – can work independently with no supervision


2
Requires Supervision – can perform job completely with limited supervision


1
Not Mastered – requires instruction and close supervision


N
No Exposure – no experience or knowledge in this area


	3
	2
	1
	N
	A. Explore Computer Concepts
	Notes:

	
	
	
	
	1. Trace the development of computers and their impact on society
	

	
	
	
	
	2. Describe the categories and evolution of programming languages
	

	
	
	
	
	3. Explain the functions of computer hardware and architecture
	

	
	
	
	
	4. Demonstrate an understanding of computer theory (e.g., bits, bytes, binary logic, memory, and storage)
	

	
	
	
	
	5. Compare computer operating systems (e.g., DOS, Windows, and Unix)
	

	
	
	
	
	6. Discuss legal/ethical issues related to computers
	

	
	
	
	
	7. Identify the application environment/interface for the specific language being covered (e.g., Windows, Macintosh, or DOS Based)
	

	
	
	
	
	8. Explain the concept of security and its relationship to programming
	

	
	
	
	
	9. Manage the operating system on the workstation
	

	
	
	
	
	10. Explain the difference between a mainframe, midframe, server, and personal computer
	

	
	
	
	
	Other:
	


	3
	2
	1
	N
	B. Apply Logical Problem-Solving Skills
	Notes:

	
	
	
	
	1. Analyze a problem
	

	
	
	
	
	2. Determine the steps needed to solve a problem
	

	
	
	
	
	3. Create a method to solve a problem
	

	
	
	
	
	4. Illustrate the problem solution using a flowchart or pseudocode
	

	
	
	
	
	Other:
	


	3
	2
	1
	N
	C. Describe the Software Development Life Cycle
	Notes:

	
	
	
	
	1. Explain how requirements for a new program are gathered
	

	
	
	
	
	2. Explain how to analyze the requirements for a new program
	

	
	
	
	
	3. Explain how to create a flowchart or pseudocode for a new program
	

	
	
	
	
	4. Explain how to use a flowchart or pseudocode in coding the modules of a new program
	


	
	
	
	
	5. Explain how to integrate the modules of a new program
	

	
	
	
	
	6. Explain how a new program is authorized/accepted
	

	
	
	
	
	7. Explain how to maintain a program
	

	
	
	
	
	Other:
	


	3
	2
	1
	N
	D. Develop Program Applications
	Notes:

	
	
	
	
	1. Use correct syntax of a given programming language
	

	
	
	
	
	2. Create a program using internal documentation
	

	
	
	
	
	3. Create a program using variables and constants
	

	
	
	
	
	4. Create a program using counters and accumulators
	

	
	
	
	
	5. Create a program using arithmetic operations and functions
	

	
	
	
	
	6. Create a program using a conditional statement
	

	
	
	
	
	7. Create a program using a loop instruction
	

	
	
	
	
	8. Create a program that requires user input
	

	
	
	
	
	9. Create a program that includes input validation
	

	
	
	
	
	10. Create a program to open, write, and read from a data file
	

	
	
	
	
	11. Create a program to produce a report
	

	
	
	
	
	12. Create a modular program using one or more subroutines
	

	
	
	
	
	13. Create a program using one- and two-dimensional arrays
	

	
	
	
	
	14. Create a program using a sort routine
	

	
	
	
	
	15. Create a program with a standard Windows graphic user interface (GUI) with objects and menus
	

	
	
	
	
	16. Create a program with a custom GUI
	

	
	
	
	
	17. Create an object-oriented program by creating objects and classes
	

	
	
	
	
	18. Create a program to display graphics
	

	
	
	
	
	19. Create a program to animate graphic objects
	

	
	
	
	
	20. Create a program using multimedia
	

	
	
	
	
	21. Create a program and supporting external documentation
	

	
	
	
	
	22. Modify an existing program
	

	
	
	
	
	23. Create a program in collaboration with a team
	

	
	
	
	
	Other:
	


	3
	2
	1
	N
	E. Explore Additional Programming Concepts
	Notes:

	
	
	
	
	1. Describe steps involved in troubleshooting and debugging
	

	
	
	
	
	2. Discuss considerations in programming for efficiency (e.g., computer time, programmer time, etc.)
	

	
	
	
	
	3. Discuss how to create a user-friendly program
	

	
	
	
	
	4. Describe event-driven programming
	

	
	
	
	
	5. Describe error catching/handling
	

	
	
	
	
	6. Compare object-oriented programming with structured programming
	

	
	
	
	
	7. Describe how the Internet uses programming
	

	
	
	
	
	8. Explain uses of scripting languages
	

	
	
	
	
	9. Discuss handicap accessibility considerations in programming
	

	
	
	
	
	Other:
	


	3
	2
	1
	N
	F. Apply Database Concepts
	Notes:

	
	
	
	
	1. Create file structures
	

	
	
	
	
	2. Describe database structures (e.g., fields, records, files, and tables)
	

	
	
	
	
	3. Create a database file with one or more tables for manipulation by program code
	

	
	
	
	
	4. Create a database file with one or more tables via text editor, database software, and/or source code
	

	
	
	
	
	5. Write code to append, delete, and update a table or a file
	

	
	
	
	
	6. Write code to integrate a database with another application
	

	
	
	
	
	7. Create a relational database application
	

	
	
	
	
	8. Write code to search, sort, and query a database
	

	
	
	
	
	Other:
	


	3
	2
	1
	N
	G. Prepare for Employment
	Notes:

	
	
	
	
	1. Demonstrate working as a team
	

	
	
	
	
	2. Demonstrate analytical skills
	

	
	
	
	
	3. Search the Internet and other places to locate career-planning information and job opportunities related to programming
	

	
	
	
	
	4. Identify careers in the information technology field
	

	
	
	
	
	5. Demonstrate communication skills
	


	
	
	
	
	6. Demonstrate logical thinking
	

	
	
	
	
	7. Demonstrate interpersonal skills
	

	
	
	
	
	8. Explore compatibility for programming
	

	
	
	
	
	Other:
	


Business Computer Programming Competency Profile (2002)
1

